The Spitzer Space Telescope, formerly the Space Infrared Telescope Facility (SIRTF), was an infrared space telescope launched in 2003. Operations ended on 30 January 2020.
Spitzer was the third space telescope dedicated to infrared astronomy, following IRAS (1983) and ISO (1995-1998). It was the first spacecraft to use an Earth-trailing orbit, later used by the Kepler planet-finder.
The planned mission period was to be 2.5 years with a pre-launch expectation that the mission could extend to five or slightly more years until the onboard liquid helium supply was exhausted. This occurred on 15 May 2009. Without liquid helium to cool the telescope to the very low temperatures needed to operate, most of the instruments were no longer usable. However, the two shortest-wavelength modules of the IRAC camera continued to operate with the same sensitivity as before the helium was exhausted, and continued to be used into early 2020 in the Spitzer Warm Mission.
During the warm mission, the two short wavelength channels of IRAC operated at 28.7 K and were predicted to experience little to no degradation at this temperature compared to the nominal mission. The Spitzer data, from both the primary and warm phases, are archived at the Infrared Science Archive (IRSA).
In keeping with NASA tradition, the telescope was renamed after its successful demonstration of operation, on 18 December 2003. Unlike most telescopes that are named by a board of scientists, typically after famous deceased astronomers, the new name for SIRTF was obtained from a contest open to the general public.
The contest led to the telescope being named in honor of astronomer Lyman Spitzer, who had promoted the concept of space telescopes in the 1940s.
More information: Jet Propulsion Laboratory
Spitzer wrote a 1946 report for RAND Corporation describing the advantages of an extraterrestrial observatory and how it could be realized with available or upcoming technology. He has been cited for his pioneering contributions to rocketry and astronomy, as well as his vision and leadership in articulating the advantages and benefits to be realized from the Space Telescope Program.
The US$776 million Spitzer was launched on 25 August 2003 at 05:35:39 UTC from Cape Canaveral SLC-17B aboard a Delta II 7920H rocket.
It was placed into a heliocentric as opposed to a geocentric orbit trailing and drifting away from Earth's orbit at approximately 0.1 astronomical units per year, an Earth-trailing orbit.
The primary mirror is 85 centimeters in diameter, f/12, made of beryllium and was cooled to 5.5 K. The satellite contains three instruments that allowed it to perform astronomical imaging and photometry from 3.6 to 160 micrometers, spectroscopy from 5.2 to 38 micrometers, and spectrophotometry from 55 to 95 micrometers.
By the early 1970s, astronomers began to consider the possibility of placing an infrared telescope above the obscuring effects of Earth's atmosphere.
In 1979, a report from the National Research Council of the National Academy of Sciences, A Strategy for Space Astronomy and Astrophysics for the 1980s, identified a Shuttle Infrared Telescope Facility (SIRTF) as one of two major astrophysics facilities to be developed for Spacelab, a shuttle-borne platform. Anticipating the major results from an upcoming Explorer satellite and from the Shuttle mission, the report also favored the study and development of... long-duration spaceflights of infrared telescopes cooled to cryogenic temperatures.
More information: NASA
Where there is an observatory and a telescope,
we expect that any eyes will see new worlds at once.
Henry David Thoreau
No comments:
Post a Comment