Sunday, 27 April 2025

'SQUEEZE THE ORANGE', THE BIODEGRADABLE FASHION

Today, The Grandma has visited the Ateneu de Fabricació de Gràcia in Barcelona with her closest friends Tonyi Tamaki and Claire Fontaine. They have been invited by Susana Squeeze and Elisenda Orange, creators of Squeeze the Orange, who are working strongly in creating biodegradable fashion made with oranges. It has been an amazing visit to learn about materials and take conscience about where and how clothes are made.

The orange, also called sweet orange to distinguish it from the bitter orange (Citrus × aurantium), is the fruit of a tree in the family Rutaceae. Botanically, this is the hybrid Citrus × sinensis, between the pomelo (Citrus maxima) and the mandarin orange (Citrus reticulata). The chloroplast genome, and therefore the maternal line, is that of pomelo. There are many related hybrids including of mandarins and sweet orange. The sweet orange has had its full genome sequenced.

The orange originated in a region encompassing Southern China, Northeast India, and Myanmar; the earliest mention of the sweet orange was in Chinese literature in 314 BC. Orange trees are widely grown in tropical and subtropical areas for their sweet fruit. The fruit of the orange tree can be eaten fresh or processed for its juice or fragrant peel. 

Oranges, variously understood, have featured in human culture since ancient times. They first appear in Western art in the Arnolfini Portrait by Jan van Eyck, but they had been depicted in Chinese art centuries earlier, as in Zhao Lingrang's Song dynasty fan painting Yellow Oranges and Green Tangerines. By the 17th century, an orangery had become an item of prestige in Europe, as seen at the Versailles Orangerie. More recently, artists such as Vincent van Gogh, John Sloan, and Henri Matisse included oranges in their paintings.

The orange tree is a relatively small evergreen, flowering tree, with an average height of 9 to 10 m, although some very old specimens can reach 15 m. Its oval leaves, which are alternately arranged, are 4 to 10 cm long and have crenulate margins.  

Sweet oranges grow in a range of different sizes, and shapes varying from spherical to oblong. Inside and attached to the rind is a porous white tissue, the white, bitter mesocarp or albedo (pith). The orange contains a number of distinct carpels (segments or pigs, botanically the fruits) inside, typically about ten, each delimited by a membrane and containing many juice-filled vesicles and usually a few pips. When unripe, the fruit is green. The grainy irregular rind of the ripe fruit can range from bright orange to yellow-orange, but frequently retains green patches or, under warm climate conditions, remains entirely green. Like all other citrus fruits, the sweet orange is non-climacteric, not ripening off the tree. The Citrus sinensis group is subdivided into four classes with distinct characteristics: common oranges, blood or pigmented oranges, navel oranges, and acidless oranges. The fruit is a hesperidium, a modified berry; it is covered by a rind formed by a rugged thickening of the ovary wall.

The word orange derives from Sanskrit  (nāraṅga), meaning orange tree. The Sanskrit word reached European languages through Persian نارنگ (nārang) and its Arabic derivative نارنج (nāranj). The word entered Late Middle English in the 14th century via Old French pomme d'orenge. Other forms include Old Provençal auranja, Italian arancia, formerly narancia. In several languages, the initial n present in earlier forms of the word dropped off because it may have been mistaken as part of an indefinite article ending in an n sound. In French, for example, une norenge may have been heard as une orenge. This linguistic change is called juncture loss. The color was named after the fruit, with the first recorded use of orange as a color name in English in 1512.

More information: NextGen Design

Biodegradation is the breakdown of organic matter by microorganisms, such as bacteria and fungi. It is generally assumed to be a natural process, which differentiates it from composting.

Composting is a human-driven process in which biodegradation occurs under a specific set of circumstances.

The process of biodegradation is threefold: first an object undergoes biodeterioration, which is the mechanical weakening of its structure; then follows biofragmentation, which is the breakdown of materials by microorganisms; and finally assimilation, which is the incorporation of the old material into new cells.

In practice, almost all chemical compounds and materials are subject to biodegradation, the key element being time. Things like vegetables may degrade within days, while glass and some plastics take many millennia to decompose. A standard for biodegradability used by the European Union is that greater than 90% of the original material must be converted into CO2, water and minerals by biological processes within 6 months.

The process of biodegradation can be divided into three stages: biodeterioration, biofragmentation, and assimilation. Biodeterioration is sometimes described as a surface-level degradation that modifies the mechanical, physical and chemical properties of the material. This stage occurs when the material is exposed to abiotic factors in the outdoor environment and allows for further degradation by weakening the material's structure. Some abiotic factors that influence these initial changes are compression (mechanical), light, temperature and chemicals in the environment. 

More information: Instagram-Squeeze The Orange

While biodeterioration typically occurs as the first stage of biodegradation, it can in some cases be parallel to biofragmentation. Hueck, however, defined Biodeterioration as the undesirable action of living organisms on Man's materials, involving such things as breakdown of stone facades of buildings, corrosion of metals by microorganisms or merely the esthetic changes induced on man-made structures by the growth of living organisms.

Biofragmentation of a polymer is the lytic process in which bonds within a polymer are cleaved, generating oligomers and monomers in its place. The steps taken to fragment these materials also differ based on the presence of oxygen in the system. The breakdown of materials by microorganisms when oxygen is present is aerobic digestion, and the breakdown of materials when oxygen is not present is anaerobic digestion. The main difference between these processes is that anaerobic reactions produce methane, while aerobic reactions do not (however, both reactions produce carbon dioxide, water, some type of residue, and a new biomass).

In addition, aerobic digestion typically occurs more rapidly than anaerobic digestion, while anaerobic digestion does a better job reducing the volume and mass of the material. Due to anaerobic digestion's ability to reduce the volume and mass of waste materials and produce a natural gas, anaerobic digestion technology is widely used for waste management systems and as a source of local, renewable energy.

In the assimilation stage, the resulting products from biofragmentation are then integrated into microbial cells. Some of the products from fragmentation are easily transported within the cell by membrane carriers. However, others still have to undergo biotransformation reactions to yield products that can then be transported inside the cell. Once inside the cell, the products enter catabolic pathways that either lead to the production of adenosine triphosphate (ATP) or elements of the cells structure.

More information: Wikifactory


Once shoppers become empowered,
we will facilitate industries thinking
in completely new terms; for example,
making products that are totally biodegradable.

Daniel Goleman

1 comment:

  1. It's very interesting. Congratulation Susana👏🏻👏🏻

    ReplyDelete